If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+108=180
We move all terms to the left:
6x^2+108-(180)=0
We add all the numbers together, and all the variables
6x^2-72=0
a = 6; b = 0; c = -72;
Δ = b2-4ac
Δ = 02-4·6·(-72)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*6}=\frac{0-24\sqrt{3}}{12} =-\frac{24\sqrt{3}}{12} =-2\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*6}=\frac{0+24\sqrt{3}}{12} =\frac{24\sqrt{3}}{12} =2\sqrt{3} $
| 4x5=28- | | 4(2)+8(2)-2c=8 | | 2.3p+4=25 | | X(3x-1)-12=4x | | 1.2m=7 | | 7x2−50x=−7 | | 5(y-7)=6 | | 6x—4=2x+4 | | (3y+2)^2-16=0 | | 2.25=k1 | | 9x^2+6x+17=0 | | 3x+10x²=33x | | 55+z=90 | | a+3a=40 | | 1/12x=108+5/12 | | 3x³+3x2+x-7,x=-1 | | 9+2=3x−2x | | Y=10x^2x^2 | | 5/3=-15x^2+50x | | (3(t+5)=27 | | 11/2y=180 | | 5(x+3)=7+x | | −a0.5+3.9=−0.5a + | | 31.2+0.12x=28.62+0.08x | | (s+6)(s-2)=s^2+2 | | 15a=27+6a | | 2x^2−x−10=0 | | x/2-5=3x-2 | | (x+5)²-15=0 | | 49+22.50n=34.75n | | 49+22.50=34.75n | | 3h(-h+1)=h-1 |